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SIMULATOR STUDY O F  PRECISE ATTITUDE STABILIZATION O F  

A MANNED SPACECRAFT BY TWIN GYROS AND 

PULSE-MODULATED FSACTION JETS 

By Armando E .  Lopez and Jack W .  Ra tc l i f f  

Ames Research Center 
Moffett F ie ld ,  C a l i f .  

SUMMARY 

A n  automatic closed-loop system and a pi lot-operated system were 
invest igated with two d i f f e ren t  torque sources, a twin-gyro cont ro l  system and 
a pulse-frequency-modulated reac t ion  cont ro l  system. These systems were eval- 
uated on a la rge  space-vehicle att i tude-motion simulator.  

The automatic closed-loop twin-gyro cont ro l  system w a s  able  t o  maintain 
a t t i t u d e  about a l l  t h ree  axes t o  within tl second of a r c .  The response t o  
s tep  commands w a s  rapid,  and t h e  system had good damping cha rac t e r i s t i c s .  The 
automatic closed-loop reac t ion  cont ro l  system w a s  able  t o  maintain a t t i t u d e  
t o  within 23 seconds of a r c .  The dynamic response w a s  not as rapid nor as 
wel l  damped as the  twin-gyro cont ro l  system. 

With e i t h e r  torque source, t h e  p i l o t  w a s  ab le  t o  s t a b i l i z e  t h e  vehicle  
t o  within +-5 seconds of a rc  of t he  desired a t t i t u d e  about a l l  axes. When t h e  
gains  i n  the  r a t e  feedback loop were a t  t h e i r  highest  value, t he  p i l o t s  con- 
s idered the  reac t ion  control  system s l i g h t l y  b e t t e r  than the  twin-gyro system. 
The p i l o t s  commented t h a t  t h e  cont ro l  t a sk  required t h e i r  undivided a t t e n t i o n .  
With the  twin-gyro cont ro l  system, the  p i l o t s ,  general ly ,  p refer red  a higher 
cont ro l  power than with the  reac t ion  zontrol  system. 

INTRODUCTION 

During the  midcourse phase of manned space f l i g h t s  while navigational 
s igh t ings  a re  being made, t h e  a t t i t u d e  of t he  vehicle  w i l l  have t o  be s tab i -  
l i z e d  t o  some exten t .  The a t t i t u d e  limits and r a t e  requirements of t h e  stabi- 
l i z a t i o n  system w i l l  depend on the  navigat ional  s igh t ing  equipment and t he  
accuracy required.  It may be desirable  t o  s t a b i l i z e  t h e  a t t i t u d e  of t he  vehi- 
c l e  t o  within a few seconds of a rc  t o  insure the  accuracy needed t o  complete 
t h e  mission. 

One a t t r a c t i v e  means of cont ro l l ing  t h e  spacecraf t  a t t i t u d e  i s  t h e  use 
of twin-gyro con t ro l l e r s  which a c t  as torque sources.  An advantage of t h i s  
type of cont ro l le r  i s  t h a t  it eliminates the  gyroscopic cross  coupling inher- 
en t  i n  a s ingle  gyro system, thereby allowing la rge  gimbal angle def lec t ions  



so  t h a t  most of t h e  momentum stored i n  t h e  gyros can be t ransfer red  t o  t h e  
vehic le .  The el iminat ion of cross  coupling a l s o  permits the  use of an inde- 
pendent cont ro l  system about each a x i s .  
a p i l o t  i n t o  t h e  cont ro l  loop.  
dynamic response cha rac t e r i s t i c s  of t h e  cont ro l  system. 
t i o n  of t h e  twin-gyro cont ro l  system has been presented i n  reference 1. A l s o  
presented a r e  some of t h e  r e s u l t s  of the  automatic a t t i t u d e  cont ro l  system. 
Some preliminary data with an automatic and manual a t t i t u d e  control  system a r e  
presented i n  reference 2.  

This f a c i l i t a t e s  t h e  introduct ion of 
The la rge  gimbal angles also improve t h e  

A complete descrip- 

Another a t t r a c t i v e  approach i s  t h e  use of an on-off react ion cont ro l  
system which i s  pulse  frequency modulated. T h i s  system encompasses t h e  re l i -  
a b i l i t y  and s impl ic i ty  of an on-off system with some of t h e  handling q u a l i t i e s  
of a proport ional  cont ro l  system. T h i s  p ropor t iona l i ty  i n  the  cont ro l  system 
f a c i l i t a t e s  t he  introduct ion of a p i l o t  i n t o  the  cont ro l  loop.  

Ames Research Center has invest igated t h e  use of both types of control-  
l e rs .  The two systems were operated automatically i n  a closed loop and manu- 
a l l y  by a p i l o t .  
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input s igna l  t o  twin-gyro pos i t i on  servo 

angular momentum of s ingle  gyro 

angular momentum of vehicle 

i n e r t i a  of vehicle  

gain constant 

Laplace operator 

time 

t o r  que output 

angular rate increment t o  t h e  vehicle per  pulse  of reac t ion  cont ro l  
j e t  

angle of gyro momentum vector w i t h  respect  t o  spin reference a x i s  

time constant,  sec 

a t t i t u d e  of t h e  vehicle with respect  t o  a laboratory frame of 
r e f  e r e  nce 
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VEHICLE S~IVIULATION 

A sketch of t h e  vehicle simulator with which these  t e s t s  were conducted 
i s  presented i n  f igure  1. This simulator i s  supported a t  t h e  center by a 
b a l l  and socket-type, low-fr ic t ion air bearing. Measurements on t h e  gas bear- 
ing support indicate  that the combined f r i c t i o n  and self-induced torques of 
t h e  gas bearing support are i n  t h e  order of a few hundred dyne-em. 

Figure 2 i s  a photograph of t h e  space-vehicle att i tude-motion simulator 
with some of the  important elements indicated.  Pr ior  t o  each data  run, the  
vehicle w a s  balanced so that i t s  center of grav i ty  coincided with i t s  center 
of r o t a t i o n  as accurately as could be determined. 'Ibis w a s  done t o  eliminate 
any s t a t i c  s t a b i l i t y  of t h e  vehicle as wel l  as constant grav i ty  torques.  

Although the  p i l o t  may control  the  a t t i t u d e  of t h e  vehicle simulator 
from on board, as w a s  done i n  t h e  invest igat ion reported i n  reference 3, i n  
t h i s  invest igat ion the  p i l o t  controlled the  manual system from a fixed 
cockpit s i tua ted  near the  simulator.  

TWIN-GYRO CONTROL SYSTEM 

One of the  twin-gyro cont ro l le rs  used as torque sources i s  shown i n  
f igure 3 .  The synchros were used as gimbal pos i t ion  sensors while the  geared 
servomotors were used t o  pos i t ion  the  gimbals. The construction of these 
cont ro l le rs  w a s  based on t h e  study reported i n  reference 4 .  

A twin-gyro cont ro l le r  i s  shown schematically i n  f igure  4. The two gyros 
a r e  shown as gimbals supported by a framework r i g i d l y  attached t o  a vehicle .  
With no input s igna l  (ec = 0) t h e  gyros have t h e i r  angular momentum vectors 
a l ined along t h e  spin reference ax is  but i n  opposite d i rec t ions .  For a given 
input s ignal ,  t h e  gyros a r e  forced t o  t u r n  through equal and opposite angles,  
+0,. The components of momentum along the  momentum exchange a x i s  add d i rec t ly .  
The component:: of momentum along the other two axes cancel.  The coqonent  of 
momentum about the  momentum exchange ax is  i s  H = 2h s i n  0, where H i s  the  
t o t a l  momentum about the momentum exchange ax is  and h i s  the angular momen- 
t u m  of each gyro. 
i s  the  time r a t e  change of momentum, 2heC cos 0,. 

The torque applied t? t h e  vehicle ,  through the  framework, 

Each twin-gyro cont ro l le r  had an angular momentum of about 110 mil l ion 
gm-cm2/sec or about 8 slug-ft2/se$. 
mum gimbal angle r a t e  of change, & ,  of about 1 radian/sec.  
torque t o  t h e  vehicle w a s  therefore  l imited t o  about 8 f t - l b .  The system 
general ly  operated a t  i t s  maximum torque when responding t o  s tep a t t i t u d e  
co"ands or disturbances.  

The servomotors were capable of a maxi- 
The resu l t ing  

The basic  elements of a s ingle-axis  automatic twLn-gyro cont ro l  system 
a r e  shown i n  t h e  block diagram of f igure 5 .  This system consisted of an a t t i -  
tude sensor (star t r a c k e r )  s igna l  processing c i r c u i t ,  gyro pos i t ion  servos, 
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gyro elements, and a vehicle.  Three s ingle-axis  cont ro l  systems were mounted 
on a space-vehicle attitude-motion simulator with t h e  momentum exchange axes 
of t h e  gyros mounted orthogonally f o r  cont ro l  about the  three  body axes of t h e  
simulator. The values of -rl, - r2 ,  and shown i n  f igure  5 were 0.2, 0 . O l 5 ,  
and 0.2 sec, respect ively.  Other import&L d e t a i l s  of t h e  automatic twin-gyro 
control  system including gains and t i m e  constants  have been presented i n  re f -  
erences 1 and 2 .  With the  gains used i n  the  automatic closed-loop mode t h e  
lead term (1 + 7 ; s )  w a s  necessary t o  conq?ensate f o r  t h e  lag t e r m  (1 + T3s)  i n  
the  gyro p o s i t i o n  servo. 

External torques i n  the  form of small j e t  reac t ion  torques were applied 

With t h e  exception of gains and i n e r t i a  val-  
t o  re turn  t h e  gyros automatically t o  t h e i r  n e u t r a l  pos i t ion ,  8, = 0, whenever 
the  gimbal angle exceeded 60'. 
ues, t h e  control  systems about a l l  th ree  axes were i d e n t i c a l .  

The block diagram presented i n  f igure  6 out l ines  t h e  system with t h e  
p i l o t  closing the  loop. 
basic elements of the  automatic control  system were modified t o  include t h e  
p i l o t  i n  the loop. 
p i l o t  cont ro l le r  and a t t i t u d e  display and t h e  elimination of the  lead-lag 
networks. 

I n  order t o  assemble a manual control  system, t h e  

These modifications consisted of the  introduction of a 

Preliminary runs were conducted with a pi lot-operated system with and 
without the lead-lag network. The p i l o t s  expressed a s l i g h t  preference f o r  
the  system c h a r a c t e r i s t i c s  without t h i s  network. However, there  w a s  no appar- 
ent  difference between the data with and without t h i s  network. 

PULSE-MODULATED REA.CTI0.N-CONTROL SYSTEM 

The cold-gas reaction-control system w a s  operated i n  a pulse-frequency 
modulated mode. Each pulse of the  react ion control  system had a constant time 
duration and imparted a constant incremental value of angular veloci ty ,  Aw, 
t o  the  vehicle .  The pulse frequency w a s  a function of the  e r r o r  s igna l  or 
the  p i l o t ' s  input .  

Figure 7 shows a time h is tory  of input s igna l  and t h r u s t  output of one 
nozzle f o r  one pulse .  The t i m e  delay w a s  approximately 20 mill iseconds.  The 
time duration of each pulse w a s  about 26 msec about the  r o l l  ax is  and approxi- 
mately 20 msec about- the  p i t c h  and yaw axes.  
d ic ta ted  by t h e  dynamic response of the  solenoid valves i n  the  react ion con- 
t r o l  system. 
r e s t r i c t e d  t h e  maximum frequency t o  about 20 pulses  per see.  
w a s  chosen t o  be about 1 pulse per see . )  

This minimum pulse width w a s  

The minimum pulse width of 23 msec and the  time delay of 20 msec 
(The minimum 

The pulse width of about 20 msec combined with maximum and minimum pres- 
sure on the  reac t ion  control  system l imited t h e  range of vehicle ve loc i ty  
increments per pulse from 0.6 t o  about 20 seconds of arc/sec.  
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A simplified block diagram showing t h e  important elements of t he  
automatic closed-loop reac t ion  cont ro l  system i s  presented i n  f igure  8.  
lead t e r m ,  necessary fo r  s t a b i l i t y  of t he  system, w a s  supplied by ra te  gyros.  

The 

A block diagram depicting the  manually operated reac t ion  control  system 
i s  presented i n  f igure  9. The rate feedback gain w a s  var ied from 0 t o  about 
5 X 1 0 5  volts/radian/sec for t h e  manually operated t e s t s .  

ATTITUDE SENSOR 

The a t t i t u d e  sensor f o r  t h i s  invest igat ion consis ted of a set  of two 
star t r acke r s  mounted off  t he  vehicle and two l i g h t  sources on t h e  vehicle 
(see f i g .  2 ) .  
roll a t t i t u d e  and t h e  other sensor w a s  mounted i n  f r o n t  of t h e  vehicle t o  
de tec t  yaw and p i t c h  a t t i t u d e s .  These sensors had a l i n e a r  output between 
+3O see of a r c .  

One sensor w a s  mounted t o  the s ide  of t h e  vehicle  for detect ing 

ATTITLDE DIEPLAY 

The a t t i t u d e  of t h e  simulator w a s  displayed t o  the  p i l o t  as a horizon 
l i n e  on an oscil losccpe ( 5  i n .  diameter) with a spike i n  t h e  center ( f i g .  10 ) .  
An a t t i t u d e  e r ro r  of 5 see of a r c  about t he  p i t c h  axis displaced the horizon 
l i n e  v e r t i c a l l y  1 em; an e r ro r  of 5 see of a r c  about t h e  yaw a x i s  displaced 
t h e  spike along the  l i n e  1 em; and a roll e r ro r  of 5 see of a r c  ro ta ted  t h e  
l i n e  approximately 14'. 

This display d i f fe red  from a conventional a r t i f i c i a l  horizon i n  t h a t  t he  
displacement of t he  horizon due t o  a p i t c h  a t t i t u d e  e r r o r  w a s  i n  a v e r t i c a l  
d i rec t ion  ra ther  than  normal t o  the  horizon. This scheme w a s  j u s t i f i e d  on 
t h e  b a s i s  of t he  small-angle def lec t ions  i n  t h i s  inves t iga t ion .  The p i l o t s  
commented t h a t  t h i s  system w a s  appropriate for  t he  cont ro l  task  involved. 

PILOT CONTROLLER 

The proport ional  cont ro l le r  shown i n  f igure  11 w a s  used i n  the  p i l o t -  
operated cont ro l  system. It consisted of a two-axis pencil-type cont ro l le r  
f o r  roll and p i t c h  cont ro l  and a set  of t o e  pedals  for yaw control .  The 
cha rac t e r i s t i c s  of t h i s  cont ro l le r  system are shown i n  f igu re  12 .  The penc i l  
cont ro l le r  w a s  i den t i ca l  t o  that used i n  the  inves t iga t ion  reported i n  r e fe r -  
ence 5 .  The cha rac t e r i s t i c s  of t h i s  cont ro l le r  w e r e  considered sa t i s f ac to ry  
by t h e  p i l o t s  f o r  cont ro l  of an en t ry  vehicle a t  high l e v e l s  of accelerat ion.  
Since it would be desirable  t o  have one cont ro l le r  for a l l  phases of space 
f l i g h t ,  t h i s  cont ro l le r  w a s  adapted f o r  t h i s  inves t iga t ion .  Here again, t he  
p i l o t s  considered t h i s  cont ro l le r  adequate f o r  t h e  cont ro l  t a s k .  
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REsms 

Automatic Twin-Gyro Control System 

The t a sk  f o r  t he  automatic cont ro l  system w a s  t o  cont ro l  t h e  vehicle  t o  
as p rec i se  an a t t i t u d e  as p r a c t i c a l  and s t i l l  maintain a reasonable dynamic 
response and damping c h a r a c t e r i s t i c .  

The performance of t h e  automatic cont ro l  system i s  demonstrated by t h e  
time h i s t o r i e s  presented i n  f igure  l3(a)  which demonstrate t h e  a b i l i t y  of t h e  
automatic system t o  s t a b i l i z e  t h e  a t t i t u d e  of t h e  vehic le .  Although no del ib-  
e r a t e  disturbances were introduced, t h e  simulator w a s  subject t o  random dis -  
turbances from c i r cu la t ion  of a i r  about t h e  simulator.  In  s p i t e  of these  
random disturbances,  t h e  a t t i t u d e  of the  vehicle  w a s  held t o  within +1 see of 
a r c .  The response t o  a s tep command i n  vehicle a t t i t u d e  w a s  rap id  and, f o l -  
lowing t h e  first overshoot, showed reasonable damping cha rac t e r i s t i c s .  Within 
a few seconds of time the  vehicle was s t a b i l i z e d  t o  within 1 see of a rc  of t h e  
c o m n d e d  a t t i t u d e .  

Step commands of vehicle veloci-ty were introduced simulating disturbances 
caused by the  occupant. 
simulator while subjected t o  s tep commands i n  vehicle ve loc i ty  of 10 see of 
arc/sec f o r  1 see of t ime.  
of time were introduced without exceeding t h e  a b i l i t y  of t he  twin-gyro system 
t o  s t a b i l i z e  t h e  vehicle .  The time t o  damp following la rge  disturbances var- 
ied  from 2 t o  3 see about t h e  roll axis t o  8 t o  10 see about t he  p i t c h  or yaw 
a x i s .  

Figure 13(b)  shows a time h i s to ry  of a t t i t u d e  of t h e  

Step commands up t o  100 see of arc/sec f o r  1 see 

Disturbances up t o  100 see of arc/sec represent  a t y p i c a l  movement of 
an occupant i n  a vehicle t h e  s i ze  of t h e  Apollo. I n  a vehicle with about 
14,000 slug-ft2 i n e r t i a  about t he  p i t c h  ax i s ,  an occupant seated a t  t h e  mass 
center  would cause an a t t i t u d e  change of 20 see of a rc  while moving h i s  hands 
f rom an a r m  cha i r  pos i t i on  t o  a pos i t i on  over h i s  head, provided the re  were 
no a t t i t u d e  cont ro l  system and no i n i t i a l  angular r a t e .  

REACTION CON'IXOL 

Automatic Closed-Loop System 

A t y p i c a l  time h i s to ry  of a t t i t u d e  of t h e  simulator while being con- 
t r o l l e d  by a pulse-modulated reac t ion  2ontrol system i s  presented i n  f igu re  lG. 
I n  t h e  absence of de l ibera te  disturbances,  t h e  control  system held the  a t t i -  
tude of t h e  simulator t o  within k3 arc  see of t h e  commanded a t t i t u d e  about 
a l l  axes.  The response t o  the  s tep command i n  a t t i t u d e  w a s  rapid and, i n  
about 4 seconds a f t e r  t he  command input,  t h e  a t t i t u d e  w a s  once again within 13 
see of a rc  of t h a t  des i red .  No simulated i n t e r n a l  disturbances were applied 
t o  t h e  simulator during t h e  t e s t s  with t h e  reac t ion  cont ro l  system. 
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Manual Twin-Gyro Control System 

The p i l o t ' s  t a sk  during these  t e s t s  w a s  t o  maintain the  a t t i t u d e  of t he  
vehicle  t o  within +-5 see of a r c  about a l l  t h ree  axes.  
of undisturbed f l i g h t ,  de l ibera te  disturbances were introduced. The p i l o t ' s  
t a sk  w a s  t o  r e tu rn  t h e  vehicle t o  within 25 see of a rc  about a l l  axes as 
quickly as poss ib l e .  

After a 2-minute per iod 

The majority of t h e  da ta  were obtained with a reserve mi l i t a ry  p i l o t  who 
had about 850 hours of j e t - f l i g h t  experience. 
obtained with an engineering tes t  p i l o t  who had about 2,400 hours of j e t -  
f l i g h t  experience. The p i l o t s  r a t ed  t h e  system as acceptable .  However, they 
d id  comment on c e r t a i n  undesirable cha rac t e r i s t i c s ,  namely, t h e  absence of 
t h e  vehicle s t a t i c  and dynamic s t a b i l i t y  general ly  present  i n  a i r c r a f t .  They 
s t a t e d  t h a t  while t h e  cont ro l  t a sk  w a s  not exceptionally d i f f i c u l t  t o  perform, 
it did require  t h e i r  undivided a t t e n t i o n .  

The remaining da ta  were 

The manual cont ro l  system w a s  t e s t e d  under t h e  same conditions as t h e  
automatic system with s tep commands i n  vehicle ve loc i ty  simulating dis turb-  
ances caused by the  occupant. Figure 15 i s  a time h i s to ry  of vehicle  a t t i t u d e  
during a t y p i c a l  run with a manually operated cont ro l  system. 
de l ibera te  disturbances were introduced f o r  t he  f i r s t  two minutes, t he  system 
w a s  subject t o  minor disturbances due t o  a i r  c i r cu la t ing  about the simulator 
and random inputs  by t h e  p i l o t .  It can be seen i n  t h i s  f igure  t h a t  t he  p i l o t  
could maintain a t t i t u d e  t o  within 5 see of a rc  during t h e  undisturbed por t ion  
of t h e  f l i g h t .  When t h e  disturbances were introduced about one or t w o  axes 
simultaneously, t he  p i l o t  w a s  able  t o  r e t u r n  t h e  vehicle t o  t h e  prescr ibed 
l i m i t s  rap i d l y .  

Although no 

Manually Operated Reactior, Control System 

The pi lot-operated system w a s  . investigated with a va r i a t ion  i n  two 
parameters, t h e  torque output of t h e  nozzles and t h e  feedback f r o m  the  r a t e  
gyros. The range of torque output of t h e  reac t ion  cont ro l  nozzles resu l ted  
i n  a range of vehicle angular r a t e  increments per  pulse  of from 0.6 t o  
20 a rc  sec/sec.  
5x105 volts / radian/sec t o  zero feedback. 
maximum value of rate t h e  p i l o t  could command through h i s  con t ro l l e r  w a s  about 
40 see of a rc / sec .  
an i n f i n i t e  r a t e .  

The range of r a t e  feedback w a s  f r o m  a maximum value of 
With maximum r a t e  feedback, t h e  

With zero feedback, t he  p i l o t  t h e o r e t i c a l l y  could command 

A time h i s to ry  of a t t i t u d e  of t h e  vehicle f o r  a manually operated 
reac t ion  control  system i s  presented i n  f igure  16. 
put  w a s  s e t  a t  a value which corresponded t o  a ve loc i ty  increment per  pulse  
of about 12 see of arc/sec and a maximum r a t e  feedback. 
cu l ty  the  p i l o t  could-maintain +5 see of a r c  about t he  commanded a t t i t u d e  
about a l l  axe s . 

In  t h i s  case t h e  je t  out- 

Without much d i f f i -  
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Comparison of Twin-Gyro and Reaction Control Systems 

The twin-gyro and react ion cont ro l  systems were evaluated on t h e  same 
simulator with t h e  same a t t i t u d e  sensing equipment. The automatic twin-gyro 
control  system w a s  able  t o  maintain vehicle a t t i t u d e  t o  within 11 see of a r c  
of t h e  commanded a t t i t u d e  about a l l  axes and s t i l l  maintain good dynamic 
response. The automatic reac t ion  cont ro l  system w a s  capable of maintaining 
vehicle a t t i t u d e  t o  within 13  see of a r c  of t h e  commanded a t t i t u d e .  No spe- 
c i f i c  requirements have been establ ished f o r  a t t i t u d e  s t a b i l i z a t i o n  systems 
for manned space vehicles .  
of both control  systems a r e  good. The twin-gyro cont ro l  system had a bas ic  
frequency response of about 1 cps and damped t o  within 1/10 amplitude i n  one 
cycle .  
damping c h a r a c t e r i s t i c s  of the  react ion cont ro l  system were such t h a t  within 
two cycles a f t e r  t h e  command input,  t h e  a t t i t u d e  of t h e  vehicle w a s  once again 
within 13 see of a r c  of t h e  desired a t t i t u d e .  

However, t h e  response and damping c h a r a c t e r i s t i c s  

The time h i s t o r y  of a t t i t u d e  presented i n  f igure  1& shows that the 

The p i l o t s  were asked t o  r a t e  t h e  control  systems on t h e  b a s i s  of a b i l i t y  
t o  maintain an a t t i t u d e  e r r o r  of l e s s  than 25 see of a rc  about a l l  axes and 
t o  r e t u r n  the  simulator t o  within these l i m i t s  following command changes or 
disturbances.  Their opinions were i n  the  form of numerical ra t ings  based on 
t h e  r a t i n g  schedule presented i n  reference 6.  

The p i l o t s  ra ted  t h e  twin-gyro control  system with a range of gains i n  
t h e  p i l o t  control  loop. 
gyro gimbal p o s i t i o n  which i s  equivalent t o  a Vehicle angular veloci ty ,  it i s  
appropriate t o  define t h e  control  system output i n  terms of vehicle angular 
r a t e .  The range of maxi" vehicle r a t e  command w a s  from about 50 t o  400 see 
of arc/sec.  The p i l o t s  generally ra ted  the  system as unsat isfactory but 
acceptable f o r  t h e  t a s k  involved. 
data  appear t o  indicate  a preference f o r  a control  power of about 200 t o  
300 see of arc/sec.  

Since the  p i l o t ,  through h i s  cont ro l le r ,  commands a 

The data  a r e  presented i n  f igure 17. These 

The p i l o t s '  opinion of the  react ion control  system i s  shown i n  f igure  18. 
When the  r a t e  feedback gain w a s  s e t  a t  i t s  highest  value, thereby l imi t ing  
the  r a t e  command t o  about 40 see of arc/sec,  t h e  p i l o t s  ra ted  the  control  
system s a t i s f a c t o r y .  
downgraded the  system. I n  the  absence of any r a t e  feedback, t h e  p i l o t s  ra ted  
a l l  control  powers as unsat isfactory.  
p i l o t s  ra ted  t h e  reac t ion  control  s l i g h t l y  b e t t e r  than the  twin-gyro cont ro l .  

One subjective comment by the  p i l o t s  w a s  t h a t  while the  control  task  w a s  
not extremely d i f f i c u l t ,  it did require t h e i r  undivided a t t e n t  ion.  
the  p i l o t s  prefer red  a higher control  power with the  twin-gyro control  system 
than with t h e  reac t ion  control  system. 

However, as the  r a t e  feedback w a s  reduced, the  p i l o t s  

With the  highest  r a t e  command, t h e  

Generally, 

Ames Research Center 
National Aeronautics and Space Administration 

Moffett Field,  C a l i f . ,  July 10, 1964 
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Figure 1.- Schematic view of space vehicle att i tude-motion simulator. 
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Figure 2 .- Photograph of space-vehicle attitude-motion simulator. 
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Figure 3 .- Photograph of twin-gyro control ler .  
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Figure 11.- Axes of ro ta t ion  of the p i l o t  control ler .  
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Figure 12.- Controller force-deflection charac te r i s t ics .  
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